

CA1610UV

PRODUCT DESCRIPTION

LONGAIN CA1610UV provides the following product characteristics:

Cyanoacrylate/UV
Ethyl cyanoacrylate with photoinitiator
Transparent, light yellow-green to dark blue-green liquid
Positive under UV light
One part - requires no mixing
Medium
Ultraviolet (UV)/ visible light
Humidity
Bonding
Plastics, Rubbers and Metals

LONGAIN 1610 is designed for bonding applications that require very rapid fixturing, fillet cure or surface cure. The UV light cure properties facilitate rapid curing of exposed surface

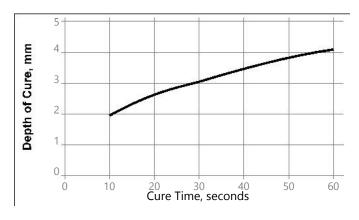
areas thereby minimizing blooming and providing an alternative to solvent borne accelerators. Suitable for use in the assembly of disposable medical devices.

ISO-10993

An ISO 10993 Test Protocol is an integral part of the Quality Program For CA1610UV. LONGAIN CA1610UV has been qualified 's ISO 10993 Protocol as a means to

assist in the selection of products for use in the medical device industry. Certificates of Compliance are available on Longain's website or through the Longain Quality Department.

TYPICAL PROPERTIES OF UNCURED MATERIAL


Specific Gravity @ 25 °C		1.06
Flash Point - See MSDS		
Viscosity, Cone & Plate, mPa·s (cP):		
Physica MC100, Cone MK 22, shear rate 100 s	-1	100 to 250

TYPICAL CURING PERFORMANCE

Primary Cure Mechanism, UV

Depth of Cure:

Electrodeless, D bulb, 100 mW/cm² , measured @ 365 nm

LED Flood Array 405nm, 100 mW/cm², measured @ 405 nm

Tack Free Time / Surface Cure

Tack Free Time is the time in seconds required to achieve a tack free surface

UV/Visible Light Sources:

Electrodeless, H bulb: 30 mW/cm ² , measured @ 365 nm	<10
Zeta® 7411-S	210
30 mW/cm ² , measured @ 365 nm	≤5
CUREJET 405 LED:	<5
65 mW/cm ² , measured @ 365 nm LED Flood Array 405nm:	20
65 mW/cm ² , measured @ 365 nm	≤5

Cure Speed vs. Substrate

The rate of cure will depend on the substrate used. The table below shows the fixture time achieved on different materials at 22 °C / 50 % relative humidity. This is defined as the time to develop a shear strength of 0.1 N/mm². Fixture time measurements relate to non-UV cure.

Fixture Time, seconds:

ABS	<5
Aluminum (grit blasted)	5 to 15
Neoprene	15 to 25
Phenolic	250 to 290
Polycarbonate	10 to 20
Polyethylene	>300
Polyethylene (Primer 770)	5 to 10
Polypropylene	>300
Polypropylene (plasma treated)	270 to 300
PVC	90 to 105
Steel (degreased)	20 to 30

TYPICAL PROPERTIES OF CURED MATERIAL

Cured @ 100 mW/cm², measured @ 365 nm, for 30 seconds per side using an Electrodless system, D bulb **Physical Properties:**

Coefficient of Thermal Expansion,

ISO 11359-2, K : Pre Tg		56×10-6
Glass Transition Temperature, ASTM E 228 Shore Hardness, ISO 868, Durometer D Linear Shrinkage, %	, °C	102 84 6
Water Absorption, ISO 62, %: 2 hours in boiling water		2.2
7 days in water @ 22 °C Elongation, at break, ISO 527-3, % Tensile Strength, ISO 527-3	N/mm²	1.3 7.3 50
Tensile Modulus, ISO 527-3	(psi) N/mm² (psi)	(7,250) 1,950 (282,900)

TYPICAL PERFORMANCE OF CURED MATERIAL Adhesive Properties

Cured @ 30 mW/cm², measured @ 365 nm, for 10 seconds using a Zeta® 7400 light source Block Shear Strength, ISO 13445: Polycarbonate N/mm² ≥9.0 (psi) (≥1,305)

Cured @ 100 mW/cm², measured @ 365 nm, for 30 seconds using a Zeta® 7411-S light source

Block Shear Strength, ISO 13445:

Acrylic to Acrylic	N/mm² (psi)	
Polycarbonate to Polycarbonate	N/mm²	22
Polycarbonate to Steel (grit blasted)	(psi) N/mm² (psi)	

Cured @ 100 mW/cm², measured @ 405 nm for 30 seconds using a LED Flood Array 405nm

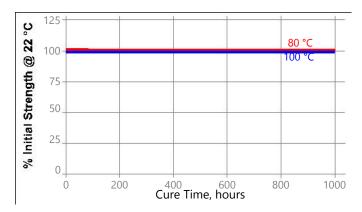
Block Shear Strength, ISO 13445:

Acrylic to Acrylic	N/mm² (psi)	
Polycarbonate to Polycarbonate	N/mm ² (psi)	16.4
Polycarbonate to Steel (grit blasted)	N/mm² (psi)	., ,

Cured @ 1,000 mW/cm², for 10 seconds using an Electrodeless system, D bulb Needle Pullout Strength

Needle Pullout Streng	jth:			
Material	22 Gaug	e Cannula	27 Ga	iuge Cannula
Polycarbonate	N 139	9	Ν	38
	(lb) (31)	(lb)	(9)
Polyethylene	N 11		Ν	24
	(lb) (2)		(lb)	(6)
Polyethylene	N 128	3	Ν	53
(plasma treated)	(lb) (27)	(lb)	(12)
Polypropylene	N 24		Ν	18
	(lb) (5)		(lb)	(4)
Polypropylene	N 87		Ν	41
(plasma treated)	(lb) (20)	(lb)	(9)

Cured for 24 hours @ 22 °C (non-UV cure) Lap Shear Strength, ISO 4587: Steel (grit blasted)	N/mm 2 (lb/in) (2	0.4 ,950)
Block Shear Strength, ISO 13445:		
Acrylic to Acrylic	N/mm ⁱ (psi)	² 8 (1,160)
Polycarbonate to Polycarbonate	N/mm ⁱ (psi)	
Polycarbonate to Steel (grit blasted)	N/mm ²	10.4
	(psi)	(1,510)


Cured for 48 hours @ 22 °C (non-UV cure)		
180° Peel Strength, ISO 8510-2:		
Steel (grit blasted)	N/mm	3
	(lb/in)	(17)

TYPICAL ENVIRONMENTAL RESISTANCE

Cured @ 30 mW/cm², measured @ 365 nm, for 10 seconds Block Shear Strength, ISO 13445: Polycarbonate

Heat Aging

Aged at temperature indicated and tested @ 22°C * Note: Substrate failure for all test specimens*

Chemical/Solvent Resistance

aged under conditions indicated and tested @ 22°C *Note: Substrate failure for all test specimens*

0	2	% of initial strength			
Environment	°C	24 h	100 h	500 h	1000 h
Water	22	100	100	100	100
95% RH	40	100	100	100	100
Heptane	22	100	100	100	100
Isopropanol	22	100	100	100	100

Thermal Stability of Needle Assemblies

Aged @ 60°C and tested @ 22 °C

Needle Pullout Strength, % of initial strength 4 weeks 8 weeks: Polycarbonate:

22 Gauge Cannula	65	50
27 Gauge Cannula	90	90
Polypropylene (plasma treated): 22 Gauge Cannula 27 Gauge Cannula	70 75	80 70

Sterilization Resistance of Needle Assemblies

Sterilized as indicated and tested @ 22 °C

Needle Pullout Strength, % of initial strength:				
	Gamma	ETO	Autoclave	
	30kGy	1 Cycle	1 Cycle	5 Cycles
Polypropylene (plasma treated):				
22 Gauge Cannula	50	55	40	45
27 Gauge Cannula	65	60	70	70

GENERAL INFORMATION

This product is not recommended for use in pure oxygen and/or oxygen rich systems and should not be selected as a sealant for chlorine or other strong oxidizing materials

For safe handling information on this product, consult the Material Safety Data Sheet (MSDS).

Directions for use:

- 1. This product is light sensitive; exposure to daylight, UV light and artificial lighting should be kept to a minimum during storage and handling.
- 2. For best performance bond surfaces should be clean and free from grease.
- 3. Excess adhesive can be dissolved with Loctite cleanup solvents, nitromethane or acetone.

Storage

Store product in the unopened container in a dry location. Storage information may be indicated on the product container labeling.

Optimal Storage: 2 °C to 8 °C. Storage below 2 °C or greater than 8 °C can adversely affect product properties.

Material removed from containers may be contaminated during use. Do not return product to the original container. Longain Corporation cannot assume responsibility for product which has been contaminated or stored under conditions other than those previously indicated. If additional information is required, please contact your local Technical Service Center or Customer Service Representative.